Search

for- within [|

Use+-()"" Search help
IBM home | Products & services | Support & downloads | My account

IBM developerWorks > Java technology develnperWorks
Advanced DA O programming =

email it
Learn techniques for building better DAOs Contents:
Level: Advanced DAO fundamentals
Sean C. Sullivan (dao-article@seansullivan.com) Transaction demarcation
Software Engineer Transaction demarcation
October 7, 2003 with JDBC

J2EE developers use the Data Access Object (DAO) design pattern to separate Overview of JTA
low-level data accesslogic from high-level business logic. Implementing the DAO _ .
pattern involves more than just writing data access code. In this article, Java Transaction demarcation
developer Sean C. Sullivan discusses three often overlooked aspects of DAO with JTA

programming: transaction demarcation, exception handling, and logging. JTA methods for transaction

During the past 18 months | worked with a team of talented software engineers to build control

custom Web-based supply chain management applications. Our applications accesseda Using JTA and JDBC
broad range of persistent data, including shipment status, supply chain metrics,
warehouse inventory, carrier invoices, project management data, and user profiles. We
used the JDBC API to connect to our company's various database platforms and applied Logging and DAOs
the DAO design pattern throughout the applications.

Choosing the best approach

Exception handling in

Figure 1 shows the relation between the applications and data sources: DAOs
Figure 1. Applications and data sour ces Implementation example:
" - MovieDAO
Web application @ g iy Conclusion
L m Resources
f : About the author

Web application . .
g Rate this article

Related content:
A stepped approach to J2EE
testing with SDAO

Web application

ERF
system

Applying the Data Access Object (DAO) pattern throughout the applications enabled us ~ Create persistent application
to separate low-level data access logic from business logic. We built DAO classesthat ~ datawith Java Data Objects

provide CRUD (create, read, update, delete) operations for each data source. Understanding JTS -- An

In this article, 'l introduce you to DAO implementation strategies and techniquesfor ~ introduction to transactions

building better DAO classes. Specificaly, I'll cover logging, exception handling, and Subscribe to the

transaction.dem_arcation. Y ou will learn how to incqrporate al threein your DAO devel operWorks newsletter

classes. This article assumes that you are familiar with the JIDBC API, SQL, and

relational database programming. devel operWorks Toolbox
subscription

Well start with areview of the DAO design pattern and data access objects.
DAO fundamentals

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/library/j-sdao/
http://www-106.ibm.com/developerworks/java/library/j-sdao/
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-i-2extreme6-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-i-2extreme6-i.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0305.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0305.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/toolbox/
mailto:dao-article@seansullivan.com

The DAO pattern is one of the standard J2EE design patterns. Developers use this pattern ~— Also in the Java zone:

to separate |low-level data access operations from high-level business logic. A typical Tutorias
DAO implementation has the following components:

« A DAO factory class
« A DAOinterface Code and components

Tools and products

« A concrete class that implements the DAO interface Articles
« Datatransfer objects (sometimes called value objects)

The concrete DAO class contains logic for accessing data from a specific data source. In the sections that follow you'll
learn techniques for designing and implementing data access objects. See Resources to learn more about the DAO

design pattern.

Transaction demarcation

The important thing to remember about DA Qs is that they are transactional objects. Each operation performed by a
DAO -- such as creating, updating, or deleting data -- is associated with a transaction. As such, the concept of
transaction demar cation is extremely important.

Transaction demarcation is the manner in which transaction boundaries are defined. The J2EE specification describes
two models for transaction demarcation: programmatic and declarative. Table 1 breaks down the two models:

Table 1. Two models of transaction demar cation

Declarative transaction demar cation Programmatic transaction demar cation

The programmer declares transaction attributes using an

EJB deployment descriptor. The programmer is responsible for coding transaction logic.

The run-time environment (the EJB container) uses the

attributes to automatically manage transactions, The application controls the transaction viaan API.

WEe'll focus on programmatic transaction demarcation.

Design considerations
As stated previously, DAOs are transactional objects. A typical DAO performs transactional operations such as create,
update, and delete. When designing a DAO, start by asking yourself the following questions:

« How will transactions start?

« How will transactions end?

« Which object will be responsible for starting a transaction?

« Which object will be responsible for ending a transaction?

«» Should the DAO be responsible for starting and ending transactions?
« Will the application need to access data across multiple DAOS?

« Will atransaction involve one DAO or multiple DAOs?

« Will aDAO invoke methods on another DAO?

Knowing the answers to these questions will help you choose the transaction demarcation strategy that is best for your
DAOs. There are two main strategies for transaction demarcation in DAOs. One approach makes the DAO responsible
for demarcating transactions; the other defers transaction demarcation to the object that is calling the DAQO's methods.
If you choose the former approach, you will embed transaction code inside the DAO class. If you choose the latter
approach, transaction demarcation code will be external to the DAO class. We'll use simple code examplesto better
understand how each of these approaches works.

Listing 1 shows a DAO with two data operations: create and update:
Listing 1. DAO methods

public void createWarehouseProfile(WHProfile profile);
public voi d updat eWar ehouseSt at us(WH dentifier id, Statuslnfo status);

http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/code.jsp
http://www-106.ibm.com/developerworks/views/java/articles.jsp

Listing 2 shows a simple transaction. The transaction demarcation code is externa to the DAO class. Notice how the
caller in this example combines multiple DAO operations within the transaction.

Listing 2. Caller-managed transaction

t x. begi n(); [l start the transaction
dao. cr eat eWar ehouseProfil e(profile);
dao. updat eWar ehouseSt at us(i d1, statusl);
dao. updat eWar ehouseSt at us(i d2, status?2);
tx.commt(); /! end the transaction

This transaction demarcation strategy is especially valuable for applications that need to access multiple DAOsin a
single transaction.

Y ou can implement transaction demarcation using either the JDBC API or the Java Transaction APl (JTA). JDBC
transaction demarcation is simpler than JTA transaction demarcation, but JTA provides greater flexihility. In the
sections that follow welll take a closer ook at the mechanics of transaction demarcation.

Transaction demarcation with JDBC

JDBC transactions are controlled using the Connect i on object. The JDBC Connection interface

(j ava. sqgl . Connect i on) provides two transaction modes: auto-commit and manual commit. The
j ava. sql . Connect i on offersthe following methods for controlling transactions:

e public void set Aut oComi t (bool ean)
« public bool ean get Aut oConmit ()

e public void commit()

e public void rollback()

Listing 3 shows how to demarcate a transaction using the JDBC API:
Listing 3. Transaction demar cation with the JDBC API

i mport java.sql.*;
i mport javax.sql.*;

...

Dat aSour ce ds = obt ai nDat aSour ce() ;
Connecti on conn = ds. get Connection();
conn. set Aut oConmi t (f al se);

...

pstm = conn. prepar eSt at enent (" UPDATE MOVIES ...");
pstnt.setString(1l, "The Great Escape");
pst mt . execut eUpdat e() ;

...

conn. comi t () ;

/1

With JDBC transaction demarcation, you can combine multiple SQL statements into a single transaction. One of the
drawbacks of JDBC transactions is that the transaction's scope is limited to a single database connection. A JDBC
transaction cannot span multiple databases. Next, we'll see how transaction demarcation is done using JTA. Because
JTA isnot aswidely known as JDBC, welll start with an overview.

Overview of JTA

The Java Transaction APl (JTA) and its sibling, the Java Transaction Service (JTS), provide distributed transaction
services for the J2EE platform. A distributed transaction involves a transaction manager and one or more resource
managers. A resource manager is any kind of persistent datastore. The transaction manager is responsible for
coordinating communication between all transaction participants. The relationship between the transaction manager

and resource managersis shown in Figure 2:

Figure 2. A transaction manager and resour ce manager s

Resource
manager

Transaction Resource

Application manager manager

Resource
manager

JTA transactions are more powerful than JDBC transactions. While a JDBC transaction is limited to a single database
connection, aJTA transaction can have multiple participants. Any one of the following Java platform components can
participate in a JTA transaction:

« JDBC connections

« JDO Per si st enceManager objects

+« JMS queues

« JMStopics

« Enterprise JavaBeans

« A resource adapter that complies with the J2EE Connector Architecture specification

Transaction demarcation with JTA

To demarcate a transaction with JTA, the application invokes methods on the

javax.transacti on. User Transact i on interface. Listing 4 shows atypical JNDI lookup for the
User Tr ansact i on object:

Listing 4. A INDI lookup for the User Transaction object

i mport javax.transaction.*;

i mport javax.nani ng. *;

...

Initial Context ctx = new Initial Context();

oj ect txpj = ctx.lookup("java: conp/ User Transacti on");
User Transaction utx = (UserTransaction) txQObj;

After the application has areferenceto the User Tr ansact i on object it may start the transaction, as shown in
Listing 5:
Listing 5. Starting a transaction with JTA

ut x. begi n() ;

...

Dat aSour ce ds = obt ai nXADat aSour ce() ;

Connecti on conn = ds. get Connection();

pstm = conn. prepar eSt at enent (" UPDATE MOVIES ...");
pstm.setString(1, "Spinal Tap");

pst nt . execut eUpdat e() ;

...

ut x. conmmit ();

I/

When the application invokes conmi t () , the transaction manager uses a two-phase commit protocol to end the
transaction.

JTA methods for transaction control
Thej avax. transacti on. User Tr ansact i on interface provides the following transaction control methods:

e public void begin()

e public void commit ()

e public void rollback()

e public int getStatus()

e public void setRollbackOnly()

e public void setTransactionTi neout (int)

To start atransaction the application callsbegi n() . To end atransaction the application calls either conmi t () or
rol | back() . See Resources to learn more about transaction management with JTA.

Using JTA and JDBC

Developers often use JDBC for low-level data operationsin DAO classes. If you plan to demarcate transactions with
JTA, youwill need a JDBC driver that implementsthej avax. sql . XADat aSour ce,

j avax. sql . XAConnecti on, andj avax. sql . XAResour ce interfaces. A driver that implements these
interfaces will be able to participate in JTA transactions. An XADat aSour ce object isafactory for XAConnect i on
objects. XAConnect i onsare JDBC connections that participate in JTA transactions.

Y ou will be required to set up the XADat aSour ce using your application server's administrative tools. Consult the
application server documentation and the JIDBC driver documentation for specific instructions.

J2EE applications ook up the data source using JNDI. Once the application has a reference to the data source object, it
will call j avax. sql . Dat aSour ce. get Connect i on() to obtain aconnection to the database.

XA connections are different from non-XA connections. Always remember that XA connections are participating in a
JTA transaction. This means that XA connections do not support JDBC's auto-commit feature. Also, the application
must not invokej ava. sql . Connecti on. commit () orjava. sql . Connecti on. rol | back() onanXA
connection. Instead, the application should use User Tr ansact i on. begi n(),

User Transacti on. conmit (),and User Transacti on. rol | back().

Choosing the best approach
We've discussed how to demarcate transactions with both JDBC and JTA. Each approach has its advantages and you
will need to decide which one is most appropriate for your application.

On many recent projects our team has built DAO classes using the JDBC API for transaction demarcation. These DAO
classes can be summarized as follows:

« Transaction demarcation code is embedded inside the DAO class.

« The DAO class usesthe JIDBC API for transaction demarcation.

« The caller has no way to demarcate the transaction.

« Transaction scopeis limited to asingle JIDBC Connection.
JDBC transactions are not always suitable for complex enterprise applications. If your transactions will span multiple
DAOs or multiple databases the following implementation strategy may be more appropriate:

« Transactions are demarcated with JTA.

«» Transaction demarcation code is separated from the DAO.

» Thecaller isresponsible for demarcating the transaction.

» The DAO participates in a global transaction.

The JDBC approach is attractive due to its simplicity; the JTA approach offers greater flexibility. The implementation
you choose will depend on the specific needs of your application.

Logging and DAOs

A well-implemented DAO class will use logging to capture details about its run-time behavior. Y ou may choose to log
exceptions, configuration information, connection status, JDBC driver metadata, or query parameters. Logs are useful
in al phases of development. | often examine application logs during development, during testing, and in production.

In this section, I'll present a code example that shows how to incorporate Jakarta Commons Logging into a DAO.
Before we get to that, let's review a couple of basics.

Choosing alogging library

Many developers use a primitive form of logging: Syst em out . printlnandSystemerr. println.

Pri nt| n statements are quick and convenient but they do not offer the power of afull-featured logging system. Table
2 listslogging libraries for the Java platform:

Table 2. Logging librariesfor the Java platform

Logging library Open sour ce? URL
java.util.logging No http://java.sun.com/j2se/
Jakarta Logdj Yes http://jakarta.apache.org/log4j/
Jakarta Commons Logging Yes http://j akarta.apache.org/commons/l ogging.html
java. util .| oggi ng isthestandard API for the J2SE 1.4 platform. Most devel opers would agree, however, that

Jakarta Log4j delivers greater functionality and more flexibility. One of the advantages of L og4j over java.util.logging
isthat it supports both the J2SE 1.3 and J2SE 1.4 platforms.

Jakarta Commons Logging can be used in conjunction withj ava. uti | . | oggi ng or Jakarta Log4j. Commons
Logging isalogging abstraction layer that isolates your application from the underlying logging implementation. With
Commons Logging, you can swap the underlying logging implementation by changing a configuration file. Commons
Logging is used in Jakarta Struts 1.1 and Jakarta HttpClient 2.0.

A logging example
Listing 7 shows how to use Jakarta Commons Logging in aDAO class:
Listing 7. Jakarta Commons Logging in a DAO class

i mport org. apache. commons. | oggi ng. *;
cl ass Document DAQ npl i nmpl ement s Docunent DAO
{
static private final Log | og = LogFactory. get Log(Docunent DAQ npl . cl ass) ;
public void del eteDocunent (String id)
{
...
| og. debug("del eti ng docunment: " + id);
...
try
{
/] ... data operations ...
}
catch (SoneException ex)
{
| og.error("Unabl e to del ete docunent", ex);
/[l ... handl e the exception ...
}
}
}

Logging is an essential part of any mission-critical application. If you encounter afailurein a DAO, logs often provide
the best information for understanding what went wrong. Incorporating logging into your DAOs ensures you will be
equipped for debugging and troubleshooting.

Exception handling in DAOs

We've looked at transaction demarcation and logging and you now have a deeper understanding of how each appliesto
data access objects. Our third and final discussion point is exception handling. Following afew simple exception
handling guidelines will make your DAOs easier to use, more robust, and more maintainable.

When implementing the DAO pattern, consider the following questions:
« Will methods in the DAQO's public interface throw checked exceptions?
« If yes, what checked exceptions will be thrown?
« How will exceptions be handled within the DAO implementation class?

In the process of working with the DAO pattern, our team devel oped a set of guidelines for exception handling. Follow
these guidelines to greatly improve your DAOSs:

« DAO methods should throw meaningful exceptions.

« DAO methods should not throw j ava. | ang. Excepti on. Aj ava. | ang. Except i on istoo generic. It
does not convey any information about the underlying problem.

o DAO methods should not throw j ava. sql . SQLExcept i on. SQLException isalow-level IDBC exception.
A DAO should strive to encapsulate JDBC rather than expose JDBC to the rest of the application.

« Methodsin the DAO interface should throw checked exceptions only if the caller can reasonably be expected to
handle the exception. If the caller won't be able to handle the exception in a meaningful way, consider throwing
an unchecked (run-time) exception.

« If your data access code catches an exception, do not ignoreit. DAOs that ignore caught exceptions are difficult
to troubleshoot.

« Use chained exceptionsto translate low-level exceptionsinto high-level ones.

« Consider defining standard DAO exception classes. The Spring Framework (see Resources) provides an
excellent set of predefined DAO exception classes.

See Resources for more detailed information about exceptions and exception handling techniques.

Implementation example: MovieDAO
Movi eDAOisaDAO that demonstrates all of the techniques discussed in this article: transaction demarcation,
logging, and exception handling. Y ou will find the Movi e DAO source in the Resources section. The codeis divided
into three packages:

. daoexanpl es. excepti on

. daoexanpl es. novi e

« daoexanpl es. novi edenp

This implementation of the DAO pattern consists of the classes and interfaces shown below:

« daoexanpl es. novi e. Movi eDAOFact ory

« daoexanpl es. novi e. Movi eDAO

. daoexanpl es. novi e. Movi eDAQO npl

» daoexanpl es. novi e. Movi eDAA npl JTA

« daoexanpl es. novi e. Movi e

« daoexanpl es. novi e. Movi el npl

« daoexanpl es. novi e. Movi eNot FoundExcepti on
« daoexanpl es. novi e. Movi eUt i |

The Movi eDAOinterface defines the DAO's data operations. The interface has five methods, as shown here:
e« public Mowvie findMovieByld(String id)
e« public java.util.Collection findMoviesByYear(String year)
e« public void deleteMwvie(String id)
e« public Mvie createMvie(String rating, String year, String, title)
e« public void updateMyvie(String id, String rating, String year, String
title)

Thedaoexanpl es. novi e package contains two implementations of the Movi eDAOinterface. Each
implementation uses a different approach to transaction demarcation, as shown in Table 3:

Table 3. MovieDAO implementations

MovieDAOImpl MovieDAOImplJTA

Implements the MovieDAO interface? Yes Yes
Obtains DataSource via JNDI? Yes Yes
Obtains java.sgl.Connection objects from a DataSource? Yes Yes
DAO demarcates transactions internally? Yes No

Uses JDBC transactions? Yes No

Uses an XA DataSource? No Yes
Participatesin JTA transactions? No Yes

MovieDAO demo application
The demo application is a servlet class called daoexanpl es. novi edenp. DenpSer vl et . DenpSer vl et uses
both of the Movie DAOs to query and update movie datain atable.

The servlet demonstrates how to combine the JTA-aware Movi e DAOand the Java Message Servicein asingle
transaction, as shown in Listing 8.

Listing 8. Combining MovieDAO and JM S codein a single transaction

User Transaction utx = MovieUtil.getUserTransaction();
ut x. begi n();
bat man = dao. creat eMovi e("R',
"2008",
"Bat man Rel oaded");
publ i sher = new MessagePubl i sher () ;

publ i sher. publ i shText Message("|'I| be back");
dao. updat eMbvi e(t opgun. get 1 d(),
"PG 13",

t opgun. get Rel easeYear (),
topgun.getTitle());
dao. del et eMovi e(| egal | ybl onde. get1d());
ut x. commit();

To run the demo application, configure an XA datasource and a non-XA datasource in your application server. Then,
deploy the daoexamples.ear file. The application will run in any J2EE 1.3-compliant application server. See Resources
to obtain the EAR file and source code.

Conclusion

Asthis article has shown, implementing the DAO pattern entails more than just writing low-level data access code.
Y ou can start building better DAOs today by choosing a transaction demarcation strategy that is appropriate for your
application, by incorporating logging in your DAO classes, and by following afew simple guidelines for exception
handling.

Resources

Download the MovieDAO source code at daoexamples.sourceforge.net

Want to learn more about the Data A ccess Object pattern? Start with the Core J2EE Patterns home page.

Kyle Brown's"A stepped approach to J2EE testing with SDAQO" (devel operWorks, March 2003) provides a short
introduction to data access objects and the DA O design pattern.

The Dragonslayer tutorial " Create persistent application data with Java Data Objects’ (developerWorks, July
2003) shows you how to combine Struts and the DA O pattern for low-impact enterprise data persistence.

Srikanth Shenoy's "Best practicesin EJB exception handling” (developerWorks, May 2002) introduces both
exception handling basics and logging with Log4j.

The Java theory and practice series offers athree-part introduction to the Java Transaction API, starting with
"Understanding JTS -- An introduction to transactions” (developerWorks, March 2002).

The Java Transaction API isakey part of the J2EE platform.

Jakarta Log4j isaworld-class logging library for Java applications.

Jakarta Commons L ogging provides an easy-to-use logging abstraction layer.

The Spring Framework provides abstraction layers for JDBC and transaction management. Additionally, the

http://daoexamples.sourceforge.net/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://www.ibm.com/developerworks/java/library/j-sdao/
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-i-2extreme6-i.html
http://www-106.ibm.com/developerworks/java/library/j-ejbexcept.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0305.html
http://java.sun.com/products/jta/
http://jakarta.apache.org/log4j/
http://jakarta.apache.org/commons/logging.html
http://www.springframework.org/

framework contains standardized DAO exception classes and INDI helper classes.

« Rod Johnson's J2EE Design and Development (Wrox Press, 2002) belongs on every J2EE devel oper's

bookshelf. The book is full of application design strategies, practical programming techniques, and real-world
examples.

« Josh Bloch's Effective Java Programming Language Guide (Addison Wesley, 2001) presents best practices for
exception handling and class library design.

« Seethe Javatechnology zone tutorials page for a complete listing of free Java technology tutorials from
devel operWorks.

« You'll find hundreds of articles about every aspect of Java programming in the devel operWorks Java technology
Zone.

About the author

Sean C. Sullivan is a software engineer working in Portland, Oregon. His most recent projects include building supply
chain management applications and an Internet e-commerce payment system. He has also worked on operating system
and CAD software projects at IBM and Image Systems Technology. Sean is an Apache Jakarta developer, having
contributed code to the Jakarta HttpClient project. He has been devel oping applications with Java since 1996 and is the
author of Programming with the Java Media Framework, published by John Wiley & Sons. Sean holdsaBSin
Computer Science from Rensselaer. He can be reached at dao-article@seansullivan.com.

e-mail it!
What do you think of thisdocument?

OKiller! (5) O Good stuff (4) O So-so;notbad (3) O Needswork (2) O Lame! (1)

Comments?

| Submit feedbackl

IBM developerWorks > Java technology developerWorks

About IBM | Privacy | Termsof use | Contact

http://www.amazon.com/exec/obidos/tg/detail/-/0764543857/
http://www.amazon.com/exec/obidos/tg/detail/-/0201310058/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
mailto:dao-article@seansullivan.com
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	Advanced DAO programming

	ILHEBNMNCEFBEAKJJOABMCJHLFOFKHAE:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: Advanced DAO programming
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

